METABOLIC ACIDOSIS

(Last updated 07/24/2019; Reviewers: Vimal Ravi, MD; John M. Litell, DO)

IMMEDIATE CONSIDERATIONS

• Treat shock before progressing too far diagnostically

FINDINGS

- Signs & Symptoms
 - No specific symptoms
 - Patients may exhibit:
 - Chest pain
 - Palpitations
 - Headache
 - Altered mental status
 - Decreased visual acuity
 - Nausea and vomiting
 - Abdominal pain
 - Muscle and bone pain
 - Patients often exhibit compensatory hyperventilation with deep regular respirations
 - Kussmaul breathing

Classification

High anion gap metabolic acidosis	Normal Anion gap metabolic acidosis
(HAGMA)	(NAGMA)
DDx (MUDPILERS):	DDx (HARDUPS):
Methanol	Hyperalimentation
Uremia	Acetazolamide
Diabetic ketoacidosis	Renal Tubular Acidosis
Propylene glycol	Diarrhea
Isoniazid	Ureteral diversion
Lactic acidosis	Post-Hypocapnia
Ethanol, ethylene glycol	Spironolactone
Salicylates	

DIAGNOSTIC INTERVENTIONS

- History and physical exam
 - Evaluate:
 - Mental status
 - Airway
 - Respiratory effort
 - Determine possible precipitating events
- Labs
 - o ABG
 - Low arterial pH (<7.35) and HCO₃⁻
 - Respiratory compensation lowers PaCO₂
 - Metabolic panel
 - Measured (not calculated) HCO₃⁻

- Anion gap
- Serum glucose
- Ketones
- Remaining electrolytes
- Lactic acid level
- Urinalysis and urine anion gap
- o Complete Blood Count, if relevant
- Monitoring
 - Electrocardiogram for changes related to potassium abnormalities
- Imaging
 - o Based on predisposing condition

THERAPEUTIC INTERVENTIONS

- General
 - Stabilize the patient using ABCD
- Treat shock if present
- Treat the suspected cause
 - Diabetes Ketoacidosis
 - Fluid resuscitation
 - Insulin infusion
 - Potassium supplementation
 - o Salicylate intoxication and hyperkalemia
 - Supplemental bicarbonate to decrease CNS damage
 - Bicarbonate deficit = 0.5 x body weight in kg x (24- serum bicarbonate)
 - Half of the calculated deficit should be administered within the first 3-4 hours

- o Alcoholic ketoacidosis
 - Fluid and dextrose infusion
 - +/- insulin
 - Give thiamine 100 mg IV/IM
- Methanol and ethylene glycol intoxication
 - Fomepizole
 - Ethanol in austere settings, but requires careful monitoring
- Normal anion gap acidosis
 - Consider sodium bicarbonate or THAM when pH<7.1
- o Renal Tubular Acidosis
 - Seek nephrologist input
 - Type I distal
 - Consider sodium bicarbonate or THAM
 - May need to supplement potassium
 - Type IV
 - Dietary potassium restriction may be necessary
 - Medications that cause potassium retention should be withdrawn
 - Consider fludrocortisone with loop diuretics and oral alkali supplementation
- Consider hemodialysis
- Consult
 - 0 Nephrologist
 - Poison control

MANAGEMENT AFTER STABILIZATION

• Follow-Up

• Evaluate cause and prevent precipitating factors

CAUTIONS

• Complications

- Large amounts of sodium bicarbonate may cause:
 - Hypernatremia
 - Hyperosmolality
 - Volume overload
 - Worsening intracellular acidosis
 - Hypercapnic respiratory failure
- Intubation and mechanical ventilation
 - Increase respiratory rate to keep minute volume requirements and prevent

worsening acidosis

4) ALGORITHM

Measure the arterial pH and PaCO₂, measure simultaneous venous HCO₃

Determine if the degree of respiratory compensation is adequate:

- Winter's formula: Expected $PaCO_2 = (1.5 \times HCO_{3.}) + 8 \pm 2$
- If compensation is not adequate, consider simultaneous respiratory failure
- Consider a mixed disorder if the pH is normal (i.e. with respiratory alkalosis in sepsis)

Calculate the Anion Gap

- What is the expected HCO3-? (HCO $_3$ falls 1 for every 1 rise in AG)
- Calculate of the Δ anion gap/ Δ HCO₃⁻ ratio in patients who have an elevated anion gap

REFERENCES & ACKNOWLEDGMENT

Acknowledgement: Faiza Hashmi, MD

- Kraut JA et al. Approach to the evaluation of a patient with an increased serum osmolal gap and high anion gap metabolic acidosis. Am J Kidney Dis. 2011 Sep;58(3):480-4.
- Kraut JA et al. Metabolic acidosis: pathophysiology, diagnosis and management. Nat Rev Nephrol.2010 May ;6 (5): 274-85.
- Emmett M. Anion-gap interpretation: the old and the new. Nat Clin Pract Nephrol 2006; 2:4.
- Mehta A. GOLD MARK: an anion gap mnemonic for the 21st century. *Lancet* 2008 ;372
 :892.